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The performances of five empirical models, namely: Hargreaves-Samani, Makkink1 (1957), Makkink2 
(1984), Priestley-Taylor and FAO 56-PM in estimating reference evapotranspiration (REF-ET) were 
separately compared with Epan data and FAO 56-PM, respectively. Based on statistical analysis, 
Hargreaves-Samani method compared best with daily and monthly Epan data, while Makkik2 (1984) 
ranked first with FAO 56-PM. In terms of regression analysis, Priestley-Taylor performed best with daily 
FAO 56-PM method while Hargreaves-Samani ranked first with daily Epan data. Hargreaves-Samani also 
correlated best with mean monthly Epan data. The quantitative evaluation of cumulative daily and 
monthly reference-evapotranspiration (RET-ET) values showed that Makkink (1984) produced the least 
overestimation and percent relative error against FAO 56-PM while Hargreaves-Samani performed best 
with Epan data with the least overestimation and percent relative error. In terms of cumulative monthly 
ETo totals for the farming season (Dec-April) over the study period, Hargreaves-Samani ranked best 
with Epan data with the least overestimation and percent relative error while Priestley–Taylor ranked 
best with FAO 56-PM producing the least overestimation. Overall, Hargreaves-Samani with its original 
coefficient was adjudged best, capable of approximating FAO 56-PM and Epan data in the Lower Niger 
River Basin, followed by Makkink (1984) and Priestley-Taylor. Penman-Monteith estimates were used to 
develop monthly correction factors for adjusting Empirical models for their potential use in Lower Niger 
Basin. A comparative study such as this has not been undertaken in the Lower Niger River Basin. The 
models recommended in this study are economical, lesser-data demanding and can be applied to 
predicting REF-ET in remote agricultural areas. 
 
Key words: Reference-evapotranspiration (RET-ET), empirical models, radiation-based methods, temperature-
based methods, FAO 56 –PM, Lower Niger River Basin. 

 
 
INTRODUCTION 
 
The accurate knowledge of evapotranspiration and 
consumptive use of water is an index of successful food 
production programme. The availability of water and 
efficiency of its economic use are dominant factors 
controlling or limiting food production and a better 

understanding of water requirements can, therefore result 
in large benefits (Hargreaves and Samani, 1981). 
Irrigation water demand is usually determined through 
evapotranspiration estimation procedures, namely; (i) 
direct   field  measurement  methods  such  as  Lysimeter 

 

 

 



 
 
 
 
apparatus and US weather Bureau Standard Class A pan 
and (ii) empirical relationships and mathematical model 
based on weather data to determine Reference 
Evapotranspiration (REF-ET) (Jensen et al., 1990; Allen 
et al., 1998). The Lysimeter apparatus, and Evaporation 
pans with associated automated measurement devices 
are rather expensive and are located at a limited number 
of weather stations around the United States and the 
world (William et al., 2008). In developing countries like 
Nigeria, there are additional problems of poor staffing, 
lack of regular site visitation, improper equipment 
calibration and instrument. 

In view of the human resources and costs implications 
of using direct measurement methods, empirical and 
mathematical models based on weather data have 
become an attractive alternative. 

The concept of reference evapotranspiration, REF-ET 
was introduced to model the evaporative demand of the 
atmosphere independent of crop type, crop development 
and management practices. Consequently, REF-ET 
values measured or calculated at different locations or in 
different seasons are comparative as they refer to the 
evapotranspiration (ETo), from the same reference 
surface (Allen et al., 1998). The empirical models for 
evaluation of REF-ET can be grouped into five categories 
namely: i) water budget, ii) Mass-transfer, iii) 
Combination, iv) Radiation-based, and v) Temperature 
based. 

The availability of numerous equations for 
determination of ET, the wide range of data types 
needed, and the wide range of expertise needed to use 
the various equations correctly make it difficult to select 
the most appropriate evaporation method for a given 
study location (Xu and Singh, 2002). Therefore, the most 
appropriate method for a given geographical location is to 
be found by research on comparative studies. In the 
humid semi-hot equatorial climate of the lower Niger 
basin, comparative studies with the objective of selecting 
the best ETo model are lacking. The aim of this study, 
therefore, was to evaluate five frequently referred ETo 
models (Table 1) and compare them first against Epan 
data and secondly against FAO 56-PM (where PM stands 
for Penman-Monteith equation). The daily and monthly 
REF – ET values were calculated following examples 17 
and 18, of Allen et al. (1998) on pages 70 to 73 as guide. 
The calculation procedures outlined in examples 17 and 
18 with the sample data were first programmed in Excel 
spreadsheet. After the Excel calculations had accurately 
reproduced the results of example problems, then the 
example data were replaced with the study data. The 
study data were the routinely measured variables, 
maximum    temperature    (Tmax),  minimum  temperature 
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(Tmin), mean temperature (Tmean), measured solar 
radiation (Rs), relative humidity (RH), wind speed (u2), 
and z only (where z is the elevation of the site in metres). 

This study will be of great economic benefits to Nigeria, 
in view of the declining oil and gas revenues and the shift 
to agricultural economy. Most of the agricultural and 
allied industries are situated in remotest area without 
weather stations. The result of this study would be the 
recommendation of an empirical and less weather-data 
demanding REF-ET equation to FAO 56-PM which can 
easily be applied to such locations. 
 
 
MATERIALS AND METHODS 
 
Weather station 
 
The weather station used in this study is located at the Port 
Harcourt International Airport, Omagwa, Rivers State, Nigeria. The 
station is located at latitude 04°51’N and longitude 05°35’E, 
elevation of 24 m (above sea level). The Nigerian Meteorological 
Agency (NIMET) station is equipped with the mercury and alcohol 
thermometers, a cup anemometer, a Campbell sunshine recorder, 
and a wet-bulb thermometer and some other meteorological 
instruments. All the instruments were checked for proper installation 
and operation during observations by NIMET. Figure 1 is the map 
of Lower Niger River Basin showing Port Harcourt while Table 2 
shows the mean monthly weather characteristics for the study 
period. The climate of Port Harcourt may be classified as Humid 
Semi – Hot Equatorial Type (Salau and Lawson, 1986), with tropical 
wet and dry season and pronounced seasonal reversal of wind 
directions. The annual rainfall is greater than 3000 mm. The wet 
season occurs between March and October and dry season from 
November to February, sometimes with occasional rainfall. 
 
 
Description of empirical equations 
 
Penman-Monteith method 
 
The FAO Penman-Monteith method is physically based, and 
explicitly incorporates both physiological and aerodynamic 
parameters (Allen et al., 1998). The form of FAO 56-PM equation 
for predicting ETo on a daily basis is: 

 

ETo = 
)34.01(

)()(408.0

2

2273
900

U

eeUGR aSTn









              (1) 

 

Where ETo is the reference evapotranspiration (mmday-1),  is 
slope of the vapour pressure curve (kPa °C-1), Rn is net radiation at 
the crop surface (MJm-2day-1); G is soil heat flux density (MJm-2day-

1); T is air temperature (°C) at 2 m height, U2 is wind speed at 2 m 
height (ms-1), es = saturation vapour pressure (kPa), ea is actual 

vapour pressure (kPa),  is psychometric constant (kPa °C-1), and es 
– ea is saturation vapour pressure deficit (kPa). The complementary 

parameters , P, es, ea, , and  have been calculated following the 
procedures given in Chapter 3 of FAO 56 (Allen et al., 1998). For
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Table 1. Characteristics of REF-ET methods (adapted from Amatya et al., 1995). 
 

Empirical models Main parameter required ± 
Recommended 
time period 

Reference 
crop 

Location developed for Principal reference 

FAO 56-PM Penman 
Monteith 

Temp., rel.hum., Net solar 
rad., Rn  

Hourly, daily, 
weekly, monthly 

Any Crop All Locations 
Jensen et al. (1990);  

Allen et al. (1994a, b; 1998) 

Makkink1 (1957) 

Makkink2 (1984) 

Temperature, incoming solar 
Rad (RS) 

10 days, monthly Grass 
Cool climate, the 
Netherlands, Australia  

Jensen (1974),  

Jensen et al. (1990);  

Xu and Singh (2000) 

Priestley-Taylor (1972) 
Temperature (T) net radiation 
(Rn) 

10 days, monthly 
Rain – fed 
Land 

Australia, United States 
Jensen et al. (1990); 

Xu and Singh (2000) 

Hargreaves-Samani 
Tmax, Tmin, Tmean 
extraterrestrial Radiation (Ra) 

Weekly, Monthly 
Cool – season 
grass 

Semiarid Western US 
Jensen et al. (1990); 

Xu and Singh (2001) 
 
±
 The appropriate units for the main parameters are given in Equations 1 – 10. 

 
 
 

 
 

Figure 1. Map of the Niger River Basin Showing Port Harcourt. 

 
 
 
the sake of completeness, other important parameters are briefly 
summarized below: 
 

Net longwave radiation ( nR ): The rate of longwave energy 

emission may be expressed quantitatively by the Stefan-Boltzman 

constant due to the absorption and downward radiation from the 
sky as: 
 

  

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Table 2. Daily averages of selected climatic parameters (2000-2010). 
 

                  Parameters 

Month 
U2 (m/s) Tmax (°C) Tmean (°C) Mean RH Solar Rad. Barometer pressure 

Jan. 3.00 30.8 20.32 25.55 67.8 94.19 

Feb. 3.30 31.1 20.93 26.01 67.57 92.03 

Mar. 4.00 34.4 24.28 29.36 81.57 103.1 

April 3.76 31.9 23.07 27.49 80.12 98.26 

May 3.75 31.3 23.00 27.16 82.63 98.55 

Jun 3.75 29.02 22.03 25.52 84.06 96.67 

July 4.07 29.80 23.32 26.55 90.33 103.52 

Aug. 3.91 29.3 23.28 26.28 90.5 103.06 

Sept. 3.81 30.6 23.71 27.17 91.61 104.56 

Oct. 3.21 30.1 22.57 26.34 85.00 99.20 

Nov. 2.54 27.3 19.72 23.52 71.89 86.56 

Dec. 2.38 27.92 18.95 23.44 65.61 86.06 

 
 
 

Where nR is net outgoing longwave radiation (MJm-2day-1),  is 

Stefan-Boltzmann (4.903 × 10-9 MJk-4m-2day-1); Tmax is maximum 
absolute temperature during the 24 h period [K = °C + 273.16]; Tmin 
is minimum absolute temperature during the 24 h period ea is actual 

vapour pressure (kPa), 
soR

sR
 is relative short wave radiation (limited 

to  1.0); Rs is measured or calculated solar radiation (MJm-2day-1), 
Rso is calculated (Equation 3) clear-sky radiation (MJk-4m-2day-1). 
 
Short wave radiation on a clear-sky day (Rso): A good 
approximation for Rso according to FAO (Allen et al., 1998), for daily 
and hourly periods is given by Equation (3). 
 

aRz)-510 x 2  (0.75soR                                                        (3) 

 
Where z is station elevation [m], Ra is extraterrestrial radiation 
[MJm-2day-1] and Rso is clear – sky solar radiation [MJm-2day-1]. 

 
Extraterrestrial radiation for daily periods (Ra): The 
extraterrestrial radiation (Ra), for each day of the year and for 
different latitude can be estimated from solar constant, the solar 
declination and the time of the year by: 

 

 )()()()()(
)60(24

sssca SinCosCosSinSinGR 


       (4) 

 
Where Ra = extraterrestrial radiation [MJm-2day-1], Gsc = solar 
constant = 0.0820 [MJm-2min-1], dr = Inverse relative distance Earth 

– sun, ωs = sunset hour angle,  = latitude (rad.),  = Solar 

declination. The complimentary equations for calculating dr, s ,  

and  are given in Allen (1996) or any standard text in hydrology. 

 
Net short wave radiation (Rns): The net shortwave radiation 
resulting from the balance between incoming and reflected solar 
radiation is given by: 

 
Rns = (1 - ) Rs                                                                                (5) 

 
Where Rns = net shortwave radiation [MJm-2day-1];  is = albedo, 
which is 0.23 for the hypothetical grass reference crop 

[dimensionless]; Rs = incoming solar radiation [MJm-2day-1] and Rns 
is expressed in the above equation in MJm-2day-1. 
 
Net radiation (Rn): The net radiation (Rn) is the difference between 
the incoming net short wave radiation (Rns) and the outgoing net 

longwave radiation  nR . 

 

Rn =  nRnsR                                                                        (6) 

 
 
Temperature-based equation 
 
FAO-56 (Allen et al., 1998) recommended Hargreaves method as 
alternative approach when solar radiation, relative humidity and or 
wind speed data are missing. In the temperature-based category, 
the Hargreaves’ equation has been selected. 
 
ETo = 0.0023 (Tmean + 17.8)(Tmax – Tmin)

0.5 Ra                                 (7) 
 
Where ETo = reference evapotranspiration (mmd-1); Ra is 
extraterrestrial radiation [MJm-2day-1]. 
 
 
Radiation-based equations 
 
Given Makkink (1984) and Priestley-Taylor (1972), two models 
have been selected in this study to represent the radiation-based 
method. Also, the lower Niger Delta region is similar to the 
Netherlands, where Makkink equation was found to give good 
results (Hansen, 1984); the two forms of Makkink equation and 
Priestley-Taylor are next discussed.  
 
Makkink Method (1957) (Makkink1): The reference 
evapotranspiration (ETo) according to Makkink (1957) is: 
 

ETo = 0.61 


Rs
.




 - 0.12                                                         (8) 

 

Where Rs is solar radiation (MJm-2day-1);  is slope of saturation 

vapour pressure curve at the temperature T (ka °C-1),  is 

psychrometric constant (ka °C-1),  is latent heat of vapourization, 
2.45 (MJkg -1). 
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Makkink Method (1984) (Makkink 2): 
 

ETo = 

Rs




*7.0

                                                               (9) 

 

ETo, , , Rs and  are as defined under Equation 1. 
 
Priestley-Taylor Method: The Priestley-Taylor method (1972) 
replaces the aerodynamic term of Penman-Monteith equation by a 
dimensionless empirical multiplier, called the Priestley- coefficient 

(). The Priestley-Taylor equation is useful for the calculation of 
daily ETo for conditions where weather input for the aerodynamic 
term (relative humidity, wind speed) are unavailable. 
 

ETo = 
 




GnR 




..                                                           (10) 

 

Where ETo is reference evapotranspiration (mm/day);  = 1.26,  is 

the latent heat of vapourization [ = 2.45 MJkg-1 at 20°C]; and all 
other terms are the same as in Equation 1. 
 
 
EVALUATION OF EMPIRICAL MODEL PERFORMANCE 
 
Quantitative methods listed in Equations 11 to 18 have been used 
to test the strength of and/or weakness of the different models. 
These methods are indicators of model performance according to 
Fox (1981), Willmott (1982), Douglas et al. (2009), Berengena and 
Gavilan (2005), Alexandris et al. (2008), Pogen et al. (2016), and 
Dash and Khatua (2016). These statistical measures and the 
regression equations were evaluated using their optimal values as 
benchmarks. 
 

i) Mean Absolute Error (MAE) = 
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ii) Root Mean Square Error (RMSE) = 
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iii) Root Mean Square Error (Systematic)(RMSEs) 

5.02

1

1





































  ii OP

N

i

N                                                                    (13) 

 
iv) Root Mean Square Error (unsystematic) (RMSEu) = 

5.02

1
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v) Model efficiency (EF) = 
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vi) Mean Bias Error (MBE) = 
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vii) Variance of the distribution of differences 
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viii) Index of Agreement (d) = 1 - 
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The notations and indices used in Equations 11 to 18 are as 
follows: 
 
Oi is observed values (estimated by FAO 56-PM or Epan), Pi is 
value predicted by any of the empirical equations used in the study, 

_
'

_
' ,, OOOandOPPbaOP iiiiii 



. 

 
 
RESULTS 
 
The results of the study are summarized in Appendix A 
(Tables A1 and A2), Tables 3 and 4 and Figures 2 to 7. 
The first stage of analysis involved the estimation of 
mean daily and mean monthly evapotranspiration based 
on Equations (1, 7, 8, 9 and 10) with their original constants. 
Subsequent analyses involved evaluation of REF – ET 
methods against FAO 56-PM and Epan data using: i) 
statistical measures represented by Equations (11-18), ii) 
statistical regression analysis, and iii) total accumulated 
daily and monthly ETo values and graphical plots. Tables 
A1 and A2 show the results of evaluation using Equations 
(11 to 18). In Tables A1 and A2, R represents the daily 
rank number for each statistical index while R

*
 represents 

the corresponding monthly rank number for each 
statistical index. The score for each ETo method was 
obtained by adding the rank numbers under R or R

*
. 

The evaluation of daily and monthly ETo estimates 
against Epan data are as presented in Table A1. The 
computed ETo values for FAO 56-PM, Hargreaves-
Samani, Makkink-1, Makkink-2, and Priestley – Taylor 
were ranked for each of the nine indices (see column 1, 
Appendix A, Table A1). The cumulative ranked values of 
R and R* are as shown in Figure 2. Apparently, the order 
of ranked performance are 1st Hargreaves-Samani, 2nd 
Makkink-2, 3rd Priestley-Taylor, 4th FAO 56-PM and 5th 
Makkink-1, respectively.  

For the comparison of estimated ETo against ETo-PM 
for daily and monthly values (Appendix A, Table A2) The 
cumulative ranked values of R and R* (Figure 3) are 1st 
Makkink-2 with the lowest aggregate score; 2nd Epan; 
3rd Makkink-1; 4th Priestley-Taylor; and 5th Hargreaves-
Samani. 

The summary of regression models of daily and 
monthly data are presented in Table 3. The goodness of 
fit of the correlation was adjudged by R

2
, in addition to the 

slope (b) and intercept (c) of the regression line. The 
applicable linear probability  model  was  obtained  by
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Figure 2. Comparison of cummulative ranking values of R & R* for estimated ETo against 
Epan daily and monthly values. 

 
 
 

 
 

Figure 3. Comparison of cummulative ranking values of R & R* for estimated ETo 
against ETo-PM daily and monthly values). 

 
 
 

Table 3. Summary of linear regression equation against Epan/ETo-PM. 
 

S/N 
a) Based on Daily Data b) Based on Monthly Data % Improvement on R

2
 

(daily and monthly) Equation Form  R
2
 Equation Form  R

2
 

1 ETo-PM = 0.636 Epan + 1.0663 0.443 ETo-PM = 0.948Epan - 0.188 0.785 77.2 

2 ETo-PM = 0.644 EToHarg + 0.975 0.408 ETo-PM = 0.947EToHarg - 0.309 0.808 98.1 

3 ETo-PM = 1.483 EToMKK2 - 2.04 0.519 ETo-PM = 1.203EToMKK2 - 0.84 0.771 25.2 

4 ETo-PM = 1.075EToRT - 0.675 0.281 ETo-PM = 1.042 EToP-T - 0.484 0.636 126.3 

5 ETo-PM = 1.702 EToMKK1 - 1.84 0.519 ETo-PM = 1.416EToMKK1 - 0.798 0.778 49.9 

1 Epan = 0.696EToPM + 1.64 0.442 Epan = 0.827EToPM + 0.963 0.785 22.5 

2 Epan = 0.9644 EToHarg + 0.0677 0.836 Epan = 0.945EToHarg + 0.078 0.922 10.3 

3 Epan = 1.335 EToMKK2 - 0.971 0.384 Epan = 1.050 EToMKK2+ 0.0752 0.674 43.0 

4 Epan = 1.634 EToHarg - 0.545 0.30 Epan = 0.956 EToP-T + 0.2156 0.614 51.1 

5 Epan = 1.532 EToMKK1 – 0.788 0.384 Epan = 1.234 EToMKK1 + 0.1186 0.678 43.4 
 
 
 

regressing: (i) mean daily and mean monthly, ETo-PM 
values against ETo values, and (ii) mean daily and 

monthly Epan values against ETo values. Both ETo-PM 
and Epan data were used as comparison criteria. A
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Figure 4. Regression of mean monthly Epan data against mean monthly ETo models i) Epan versus ETo-PT (Priestley-Taylor) ii) 
Epan versus Makkink-1 iii) Epan versus ETo -PM iv) Epan versus Hargreaves-Samani and v) Epan versus Makkink-2. 

 
 
 

regression equation of slope (b) of 1, an intercept (c) 
close to zero (0) and coefficient of determination (R

2
) of 

1, produces a perfect fit. Figures 4 and 5 show typical 

mean monthly plots of ETo-PM against mean monthly ETo 
values and mean monthly Epan values against mean 
monthly ETo values, respectively. 
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Figure 5. Regression of mean monthly ETO - PM against mean monthly ETo models i) ETo - PM versus Hargreaves-Samani ii) ETo - PM 
versus Makkink 2 iii) ETo - PM versus PT (Priestley-Taylor) iv) ETo - PM versus Makkink 1 and v) ETo - PM versus Epan. 

 
 
 

The cumulative ranked values of goodness of fit, R
2
, 

slope, b and intercept, c for the regression models 
(Figures 4 and 5) of daily and monthly ETo against ETo-

PM or Epan values are shown in Figures 6 and 7 and 
Tables A1 and A2, respectively. The correlation of daily ETo 

values showed the following order of “best fit” (Figure 6):



170          Int. J. Water Res. Environ. Eng. 
 
 
 

 
 

Figure 6. Comparison of best fit regression models of daily and monthly ETo against ETo-PM values.  

 
 
 

 
 

Figure 7. Comparison of best fit regression models of daily and monthly ETo against Epan values. 

 
 
 
1

st
 Epan, 2

nd
 Makkink-1, 3

rd
 Makkink-2, 4

th
 Hargreaves-

Samani, 5
th
 Priestly-Taylor, respectively. For the monthly 

ETo against ETo-PM linear regression models, we have: 
1st Epan, 2nd Hargreaves-Samani, 3rd Priestly-Taylor, 
4th Makkink-1 and 5th Makkink-2, respectively. Figure 7 
shows the distribution of “best fit” regression models of 
daily and monthly ETo against Epan values with respect 
of cumulative ranking of R

2
, b and c values. For daily ETo 

against Epan, the order of best fit are: 1
st
 Hargreaves-

Samani and Makkink-2, 2nd FAO 56-PM and Makkink-1, 
and 3

rd
 Priestly-Taylor, respectively. 

The distribution of the goodness of fit, R
2
 as bench 

mark for the various regression models are as follows: i) 
0.281 - 0.519 for daily ETo versus ETo-PM; ii) 0.299 – 

0.836 for daily ETo versus Epan values; iii) 0.613 – 0.922 
for monthly ETo versus Epan; and iv) 0.636 – 0.808 for 
monthly ETo against ETo-PM values, respectively. 

Figure 9 shows the cumulative monthly ETo totals for 
the farming season (December-April) during the study 
period (2000-2010). The cumulative monthly total 
estimated by Hargreaves-Samani was 7,136.19 mm, 
FAO 56-PM produced 6,448.5 mm, Priestly-Taylor- 
6,538.23 mm, Makkink1- 5,298.43 mm; Makkink2- 
6,280.9 mm and Epan- 7,124.32 mm. 

In terms of absolute values of over/under estimation 
and percent relative error with Epan as benchmark, 
Hargreaves-Samani with original coefficient over 
estimated by 11.87mm and percent error of 0.17%
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Figure 8. Percent relative error versus Epan & ETo- PM monthly data. 

 
 
 
ranked first, while Priestly-Taylor; 586.1 mm and 8.23%, 
FAO 56-PM; 675.77 mm and 9.49%, Makkink-2; 843.38 
mm and 11.84% and Makkink-1; 1825.9 mm and 25.63% 
ranked second, third, fourth and fifth positions, 
respectively. With FAO 56-PM as benchmark, Priestly-
Taylor ranked best by 89.68 mm and 1.39%, Makkink-2 
ranked second by 167.6 mm and 2.60%, while Epan data 
(675.77 mm and 10.48%), Hargreaves-Samani (687.65 
mm and 10.66%), Makkink-1(1,150.1 mm and 17.84%) 
ranked a distant third, fourth and fifth positions, 
respectively. 
 
 
DISCUSSION 
 
One of the objectives of this study is to find the best and 
approximate alternative to the standard FAO 56-PM 
method. The quest for the best ETo model has prompted 
a global research in different climatic regions. For 
example, Tomar (2015) found FAO 56-PM model most 
appropriate for sub- humid Tarai region of Ultarakhand, 
India. Tabari (2010) found the Makkink model performed 
best in cold humid climates like the Netherlands. Amatya 
et al. (1995) found Turc model the best prediction method 
for the humid coastal plains of the United States and so 
on. In this study, the results of the statistical measures 
showed Hargreaves-Samani method ranked best for both 
daily and monthly evaluation with Epan data as 
benchmark. For the daily and monthly evaluation with 
FAO 56-PM as benchmark, Makkink2 (1984) ranked best 
while Epan data compared reasonably well with FAO 56-
PM in the second position. 

In terms of statistical regression analysis, Epan 
correlated best for daily and monthly FAO 56-PM values. 
Similarly, Hargreaves-Samani method correlated best 
with daily and monthly Epan data. 

In terms of  quantitative  evaluation  of  total  cumulated  

ETo values for the study period (2000-2010) and 
cumulative monthly ETo totals for the farming season 
(Dec-April) against both Epan data and FAO 56-PM, the 
results were in agreement with those of the statistical 
measures and regression analysis. Generally, 
Hargreaves-Samani method correlated best with Epan 
data, which is more evident in Figure 8 for the monthly 
ETo totals for the farming season. Hargreaves-Samani 
scored the overall least over estimation of 11.78 mm (11 
years) and percent relative error of 0.17%. With respect 
to FAO56-PM, both Priestly-Taylor and Makkink-2 
compared best with FAO 56-PM. 

The farming season is a period of high water demand 
and the best performance model was Hargreaves-
Samani, a plausible model for the Lower Niger basin. 
Similar performance of the Hargreaves-Samani has been 
reported by Ramirez et al. (2011) for Colombian coffee 
zone, although in the said study, Hargreaves-Samani 
was evaluated against FAO 56-PM. Also Amatya et al. 
(1995) found Makkink and Priestly-Taylor methods in 
closest agreement with FAO 56-PM. The close 
agreement between FAO 56-PM and the radiation-based 
method (Makkink and Priestly-Taylor) is probably due to 
the prevalent low advective conditions in the Lower Niger 
River basin. The study agreed with Allen et al. (1998) 
who recommends an alternative ETo equation to FAO 
Penman-Monteith equation. 

The results of Equations 11 to 18 shown in Tables A1 
and A2 have been used to assess the strength and 
weakness of the statistical measures. All the statistical 
measures were calculated on the basis of the relationship 
between observed and predicted mean deviations. The 
index “D” is a measure of cross-comparison between the 
models. Fox (1981) recommended that at least RMSE, 
MAE, RMSEs and RMSEu be applied in evaluating 
model performances and that RMSE and MAE are 
among the best overall measures of model performance
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Figure 9. Cummulative totals against ETo methods during farming season. 

 
 
 
because they summarize the mean difference between 
observed(O) and predicted(P) values. The criteria 
adopted for assessment is that values of MAE and RMSE 
that are very close to zero are considered better models. 
According to Alexandris et al. (2008), Fox (1981) and 
Greenwood et al. (1985) a good model is one that has 
very low RMSEu and RMSEs values which are close to 
RMSE. From Table A1, Hargreaves–Samani has the 
least MBE, MAE, Sd, RMSE, RMSEs values with the 
exception of RMSEu, thus showing the best performance 
against Epan, seconded by Priestly-Taylor and thirdly by 
Makkink2. From Table A2, Makkink2 performed best 
against FAO-56 PM, seconded by Epan. 

The general improvement for monthly estimates in R
2
, 

MBE, MAE, and RMSE values indicated that the 
regression equations and statistical analyses for daily 
REF-ET values were less accurate than the monthly 
estimates. This greater error of prediction was due to the 
wide variation in daily weather parameters as compared 
to the mean monthly data where variability was reduced 
by the averaging effect. 

In order to improve the accuracy of the REF-ET models 
against FAO 56-PM, monthly correlation factors have 
been computed as ratio of monthly total of PM REF-ET to 
the monthly total for each model as shown next. 
 
 
Recalibration of model constants 
 
From the evaluation of ETo models against Epan data as 
benchmark, only Hargreaves-Samani and Priestly-Taylor 
methods over estimated/under estimated with a small 
margin of 313.4 mm and 452.3 mm in 11 years (2000-
2010). With FAO 56-PM as a bench mark, only Makkink-
2 (1984) method over estimated with a small margin of 
512.4 mm, the other empirical models produced large 
margins. The existence  of  large  margins  support  the 

need to adjust the models in a calibration process. The 
adjustment was achieved with the use of mean monthly 
correction factors. The mean monthly correction factors 
for ETo models were computed as the ratio of the monthly 
total of FAO 56-PM to the monthly total for each method 
averaged over the record period (Amatya et al., 1995). 
Table 4 contains the estimated monthly correction factors 
for adjusting the ETo models against FAO 56-PM. These 
adjustment factors can be used for prediction of RET- ET 
beyond year 2010. 
 
 
Conclusion 
 
The following conclusions were drawn from the results of 
the study: 
 
i) Based on the statistical analyses, regression analysis, 
accumulated REF-ET values (2000 to 2010); monthly 
REF-ET estimates (summed daily values) for the farming 
season (Dec to April). Hargreaves-Samani method was in 
best agreement with daily and monthly Epan data. 
Furthermore, Hargreaves-Samani method was in best 
agreement with Epan data during the farming season 
(December - April) producing a slight over estimation of 
11.87 mm and percent relative error 0.17% in 11 years. 
ii) The comparison of REF-EF estimates with Epan data 
and FAO 56-PM as benchmarks showed that 
Hargreaves-Samani method was in best agreement with 
Epan data while Priestley-Taylor ranked best against 
FAO 56 PM, seconded by Makkink2 (1984) and thirdly 
Hargreaves-Samani method. Thus, Hargreaves-Samani 
performed reasonably well with FAO56-PM. 
iii) The mean monthly data correlates better with Epan 
data and FAO 56-PM than the daily data. The three best 
REF-ET models are in this order: Hargreaves–Samani, 
Priestley-Taylor and Makkink (1984) and may be
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Table 4. Estimated monthly correction factor for adjusting ETo empirical models against ETo-PM. 
 

             ETos 

Month 
Harg P – T MKK1 MKK2 Epan 

Jan. 0.9693 1.046 1.237 1.044 0.9402 

Feb. 0.9004 1.061 1.314 1.107 0.8974 

Mar. 0.8637 0.9715 1.236 1.042 0.8840 

April 0.8986 0.9050 1.142 0.9650 0.9428 

May 0.8608 0.8949 1.1363 0.9563 0.9253 

Jun 0.8712 0.8331 1.048 0.8807 0.9253 

July 0.8309 0.8370 1.073 0.8970 0.9412 

Aug. 0.8632 0.8162 1.044 0.8747 0.9031 

Sept. 0.7741 0.8330 1.086 0.9077 0.7923 

Oct. 0.8031 0.8652 1.110 0.9300 0.8003 

Nov. 0.8475 0.8771 1.095 0.9213 0.8245 

Dec. 0.8475 0.9554 1.156 0.9741 0.8607 

Average 0.8645 0.9080 1.340 0.9584 0.8834 

 
 
 
recalibrated using the approach stated above. 
iv) The FAO – 56 PM is universally accepted the 
“standard” method for estimating daily or monthly ETo. A 
major disadvantage to the application of the standardized 
FAO-56 PM procedure is the relatively high data demand 
requiring measurements of Temperature, Rel. hum., Rs, 
wind speed(u) and a plethora of intermediate parameters. 
Another problem is linked with data quality. Lastly, 
another serious problem is related to the cost of 
instrumentation for collecting the required meteorological 
in automated weather stations (Valiantzas, 2013; Jensen 
et al., 1997; Allen, 1996). The outcome of this study 
corroborates with Allen et al. (1998) which recommends 
Hargreaves-Samani as an alternative model for ETo. 
Hargreaves-Samani is a temperature–based model which 
requires only a few input parameters such as mean 
temperature, minimum temperature, maximum 
temperature and extraterrestrial radiation (Ra). 
Consequently, it is an economic alternative. 
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APPENDIX A 
 
Table A1. Summary statistics of ETo estimation methods against Epan (daily and monthly values). 
 

Indices 
FAO 56-PM 

R R* 

Hargreaves-Samani 

R R* 

Makkink-1 

R R* 

Makkink-2 

R R* 

Priestley-Taylor 

R R* 

_
P (mm/day) 3.80(3.37) 4 (4) 4.37(3.88) 2 (2) 3.31(2.94) 5 (5) 3.93 (3.5) 3 (3) 4.2 (3.70) 1 (1) 

MBE(mm/day) 0.491(-0.381) 4 (4) 0.088(0.136) 1 (2) -0.973 (-0.81) 5 (5) -0.348 (-0.25) 3 (3) -0.13 (-0.054) 2 (1) 

MAE(mm/day) 0.686(0.414) 4 (4) 0.230(0.18) 1 (1) 1.05 (0.81) 5 (5) 0.615 (0.349) 3 (3) 0.56 (0.310) 2 (2) 

sd
2

 0.448(0.0962) 3 (2) 0.116(0.031) 1 (1) 0.463 (0.31) 5 (5) 0.448 (0.126) 2 (3) 0.49 (0.159) 4 (4) 

RMSE(mm/day) 0.830(0.491) 4 (4) 0.351(0.223) 1 (2) 1.19 (0.89) 5 (5) 0.754 (0.134) 3 (1) 0.71 (0.389) 2 (3) 

RMSEu(mm/day) 0.597(0.307) 5 (4) 0.321(0.18) 4 (1) 0.27(0.23) 1 (2) 0.305 (0.28) 2 (3) 0.32 (0.315) 3 (5) 

RMSEs(mm/day) 0.577(0.384) 2 (4) 0.142(0.14) 1 (1) 1.16(0.85) 5 (5) 0.690 (0.33) 4 (3) 0.63 (0.228) 3 (2) 

EF 0.014(0.371) 5 (5) 0.824(0.87) 2 (2) -1.02(-1.1) 1 (1) 0.187 (0.51) 4 (4) 0.27 (0.605) 3 (3) 

D 0.750(0.862) 2 (3) 0.952(0.97) 1 (1) 0.543(0.61) 5 (5) 0.631 (0.84) 3 (4) 0.63 (0.870) 4 (2) 

R2 0.443(0.7846) 2 (2) 0.836(0.922) 1 (1) 0.38(0.678) 4 (3) 0.40 (0.674) 3 (4) 0.30 (0.614) 5 (5) 

b(lope) 0.636(0.8273) 2 (4) 0.867(0.945) 1 (3) 0.251(1.234) 5 (5) 0.30 (1.050) 3 (1) 0.26 (0.956) 4 (2) 

C(intercept) 1.066(0.9625) 2 (5) 0.658(0.078) 1 (2) 2.234(0.119) 3 (3) 2.70 (0.075) 4 (1) 3.05 (0.216) 5 (4) 

Cumulative R & R* values  39 (45) 17 (19) 49 (49) 37 (33) 38 (34) 
 

( ) = Estimates Based on mean Monthly values, N=3575, R =Ranking Based on Daily values; R*=Ranking Based on mean monthly values. 

 
 
 
Table A2. Summary statistics of ETo estimation methods against EToPM (daily and monthly values). 
 

Indices Epan R R* Hargreaves-Samani R R* Makkink1 equation R R* Makkink2  R R* Priestley-Taylor R R* 

_
P (mm/day) 4.28 (3.75) 3(3) 4.37 (3.88) 5(5) 3.31 (2.94) 4(4) 3.93 (3.5) 1(1) 4.2 (3.7) 2(2) 

MBE(mm/day) 0.491(0.381) 4 (3) 0.579 (0.517) 5 (5) -0.482 (-0.43) 3( 4) 0.144 (0.13) 1 (1) 0.364(0.328) 2 (2) 

MAE(mm/day) 0.686(0.414) 4 (2) 0.749 (0.545) 5 (5) 0.542 (0.430) 2 (3) 0.451 (0.289) 1 (1) 0.618(0.461) 3 (4) 

sd
2

 0.448(0.096) 3 (2) 0.458 (0.086) 4 (1) 0.364 (0.128) 2 (4) 0.343 (0.111) 1 (3) 0.461(0.161) 5 (5) 

RMSE(mm/day) 0.830(0.491) 4 (2) 0.890 (0.594) 5 (5) 0.772 (0.555) 3 (4) 0.603 (0.356) 1 (1) 0.770(0.517) 2 (3) 

RMSEu(mm/day) 0.624(0.287) 5 (4) 0.610 (0.276) 4 (3) 0.234 (0.194) 1 (1) 0.269 (0.231) 2 (2) 0.334(0.306) 3 (5) 

RMSEs(mm/day) 0.545(0.398) 2 (3) 0.652 (0.530) 3 (5) 0.736 (0.520) 5 (4) 0.540 (0.271) 1 (1) 0.70(0.417) 4 (2) 

EF -0.079 (0.45)3 (2) -0.241 (0.195) 2 (5) 0.067 (0.297) 5 (4) 0.432 (0.711) 1 (1) 0.071(0.391) 4 (2) 

D 0.747(0.864) 1 (2) 0.710 (0.822) 3 (3) 0.627 (0.773) 4 (5) 0.722 (0.901) 2 (1) 0.582(0.814) 4 (5) 

R2 0.442(0.785) 3 (2) 0.410 (0.808) 4 (1) 0.519 (0.778) 2 (3) 0.519 (0.771) 3 (4) 0.28(0.636) 5 (5) 

b(lope) 0.696(0.948) 1 (2) 0.634 (0.947) 2 (3) 0.305 (1.416) 4 (5) 0.350 (1.203) 3 (4) 0.261(1.042) 5 (1) 

C(intercept) 1.64(-0.188) 1 (1) 1.97 (-0.312) 5 (2) 2.15 (-0.798) 3 (4) 2.61 (-0.84) 4 (5) 3.17(-0.484) 5 (3) 

Cumulative R & R* Values  34 (27) 44 (43) 38 (45) 21 (22) 44 (40) 
 

( ) = Estimates based on mean monthly values, N=132, R =Ranking based on daily values; R*=Ranking based on mean monthly values. 
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Figure 1a. Regression of Mean Monthly Epan Data against Mean Monthly ETo models i) Epan versus ETo PT(Priestley-Taylor) ii) 
Hargreaves-Samani iii) Epan versus ETo -PM iv) Epan versus Makkink 2 and v) Epan versus Makkink 1. 
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Figure 1b. Regression of Mean Monthly ETO - PM against Mean Monthly ETo models i) ETo - PM versus Epan ii) ETo - PM versus 
Hargreaves-Samani iii) ETo - PM versus PT (Priestley-Taylor) iv) ETo - PM versus Makkink 2 and v) ETo - PM versus Makkink 1. 
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Analysis of spatial and temporal drought variability in the upper Tana River basin using Palmer Drought 
Severity Index (PDSI) was conducted. The drought is critical for formulation of mitigation measures in 
the river basin. A monthly temporal and 90-m spatial resolution was applied. This was achieved within 
ArcGIS environment. Climatic data for 1970 to 2010 was used for computation of the PDSI while the 
missing data sets were filled using Artificial Neural Networks (ANNs). The results of PDSI for dry and 
wet seasons at meteorological stations indicate that the time series plots for the PDSI values for dry 
season are generally lower than those for the wet seasons. The PDSI values for meteorological stations 
located at the lower elevation of the basin are lower than those located at higher elevation. On the other 
hand, spatially distributed drought severity based on PDSI show that the ranges of maximum and 
minimum drought severity values in 1970 are -0.868 to -0.804 and -0.675 to -0.610 respectively. These 
values of drought severity occur respectively in the north-western and south-eastern areas of the basin. 
PDSI values increased from the range -0.675 to -0.610 in 1970 and from -1.087 to 0.957 in 2010 for the 
north-eastern areas of the upper basin. The south eastern areas of the basin are more prone to drought 
risks than north-western parts. Use of the PDSI reflects the spatial heterogeneity and temporal 
variability of drought across the basin. The drought assessment offer technical approach for 
comprehensive understanding of drought for effective drought-induced disaster mitigation and its 
management, with a view to reducing adverse effects on livelihoods. 
 
Key words: Palmer Drought Severity Index (PDSI), drought severity, upper Tana River basin, monthly 
resolution, drought-induced disaster. 

 
 
INTRODUCTION 
 
Drought is a condition on land characterised by scarcity 
of water that falls below a defined threshold level. The 
term drought has been defined differently in numerous 

applications (UNDP, 2012). However, it is a challenge to 
quantitatively define the term.  Droughts may be 
expressed in terms of indices that depend on

 

*Corresponding author. E-mail: wambuarm@gmail.com. 

  

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution 

License 4.0 International License 

http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


 
 
 
 
precipitation deficit, soil-water deficit, low stream flow, low 
reservoir levels and low groundwater level. Drought may 
be defined differently depending on the sector involved. 
For example, a hydrological-drought occurs whenever 
river or groundwater levels are relatively low. In addition, 
water-resources drought occurs when basins experience 
low stream flow, reduced water reservoir volume and 
groundwater levels. The water resources drought is 
influenced by climatic and hydrological parameters within 
a river basin and drought management practices. The 
hydrological drought, mainly deals with low stream flows. 
This drought adversely affects various aspects of human 
interest such as food security, water supply and 
hydropower generation (Karamouz et al., 2009; Belayneh 
and Adamowski, 2013). 

It is paramount to analyse and monitor drought due to 
its adverse effects. For the purpose of understanding 
drought, the hydro-meteorological variables are 
encapsulated into drought indices at river basin scales. 
These drought indices provide critical information on 
decision making (Quiring and Papakryiakou, 2003). In 
order to mitigate adverse drought impacts on water 
resources, ecosystems, economy and peoples 
livelihoods, it is paramount to undertake drought studies. 
Key drought studies should describe its characteristics 
such as temporal trends, spatial distribution of severity 
frequency and duration. Prior to formulation of drought 
mitigation mechanism in a river basin, it is essential to 
first describe its characteristics at the basin scale. 
Drought affects ecosystem response mechanisms and is 
thus perceived to influence the future of the global earth 
carbon balance (Bonal et al., 2016). 

In this study, upper Tana River basin was selected 
because it is a very important resource in Kenya. It is 
clipped from the larger Tana River basin; the largest river 
basin in the country that provide huge water resources. 
The upper Tana River basin has forest land resources 
located along the eastern slopes of Mount Kenya and 
Aberdares range which have a critical role in regulating 
the hydrology of the entire basin (IFAD, 2012). The basin 
is located within a fragile ecosystem that represents all 
agro-ecological zones of Kenya where water resource 
systems, hydro- power generation and food security are 
negatively impacted by frequent drought occurrences.  

A number of drought types have been recognized by 
previous researchers. According to Zoljoodi and 
Didevarasl (2013), there are four main categories of 
droughts; Hydrological, Meteorological, Agricultural and 
Socio-economic droughts. The first three types are called 
the operational droughts and can be integrated into a 
drought management process. Their relation can be used 
in development of water resources program within a river 
basin (Karamouz et al., 2003). Propagation of 
hydrological and agricultural drought starts from 
meteorological droughts induced by changing 
phenomena within the hydrological cycle (Figure 1).  

The     three    operational    types    of    droughts    are 
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interconnected. For instance, Agricultural drought links 
meteorological and/or hydrological drought to agricultural 
impact. Agricultural droughts impact negatively on 
farming systems whenever they occur. Their impacts are 
normally two-fold; environmental and economic impacts. 
The agricultural drought is a type associated with low 
agricultural production, increased food insecurity, decline 
in output from agro-processing industries and 
unemployment incidents in the agricultural sector. From 
the environmental perspective, agricultural drought is 
caused by insufficient precipitation, high temperature that 
causes elevated rates of evapo-transpiration, increased 
salt concentration in the crop root zones and soils within 
irrigation systems (Mishra and Singh, 2010). The term 
environmental drought is sometimes used to address the 
adverse effects of extremely low flows on ecosystems, and 
may be analysed in the emerging field of eco-hydrology. 

Based on purpose for research, drought indices have 
previously been developed and applied on drought 
studies. Some of the most common drought indices 
include palmer drought severity index (PDSI), 
standardized precipitation index (SPI), surface water 
supply index (SWSI), soil moisture deficit index (SMDI), 
vegetative index (VI) and stream flow drought index 
(SDI). In the present study, PDSI was used to analyse 
drought episodes in the uppar Tana River basin. 

Several coefficients which are calculated to define local 
hydrological characteristics influenced by precipitation 
and temperature are calculated for use in PDSI. These 
coefficients depend on soil water capacity of the principal 
layers. The PDSI has been applied on a number of 
catchments for detecting and planning of drought relief 
programmes (Loucks and Van Beek, 2005). In the 
present study, spatial and temporal drought variability in 
the upper Tana River basin was analysed using Palmer 
Drought Severity Index (PDSI) to detect the drought 
prone areas and the severity drought events for the 
period 1970 to 2010. 

 
 
MATERIALS AND METHODS 
 
Study area 
 
The study area; upper Tana River basin is located within latitudes 
00° 05' and 01° 30' south and longitudes 36° 20' and 37° 60' east. 
The study area covers 17,420 km2 and is illustrated in Figure 2).  

Upper Tana River basin is a portion of the Kenya’s largest rivers 
system called Tana River basin (Jacobs et al., 2004; WRMA, 2010). 
There are very important vast land and forests on eastern slopes of 
Mount Kenya and Aberdares range within the study area. The river 
basin greatly regulates the hydrological processes (IFAD, 2012) 
and as subsequently influence the hydro-electric generation. This 
basin is plays a key role in hydro-electric generation, water supply 
and agricultural production in Kenya. 
 
 

Climatic data acquisition 
 
The data, precipitation, potential, soil moisture content and
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Figure 1. Propagation of drought via hydrological cycle. 

 
 
 
temperature were used in computation and analysis Palmer 
Drought Severity Index (PDSI). The climatic data ranged from 1970-
2010 (41 years) were used in this study. Part of this data was 
available while the missing data was estimated for all variables. The 
available data was on daily time step but had to be re-organized 
into monthly average time scales for all the variables to match with 
the data requirements of the present research. The daily stream 
and monthly flow data was obtained from the Ministry of 
Environment and Natural Resources, and Water Resources and 
Management Authority (WRMA). 

In the upper Tana River basin, data from twenty four 
meteorological stations were obtained from the Ministry of Water 
and Irrigation. The stations provided meteorological; precipitation, 
temperature, evaporation data. The data were then subjected to 
exploratory data processing. It was found out that only eight 
stations had reliable and sufficient data. Where the available data 
contained less than 20% data gaps, then these data were selected 
for computation of the PDSI. The eight stations used in the study 
(Table 1) were also objectively located within the low (LE), lower 

middle (LME), middle (ME) and high (HE) elevations.  The stations 
are located at different agro-ecological zones of the basin. 

 
 
Consistency test of the climatic data 

 
A double-mass curve was fitted for the collected hydro-
meteorological data to test for consistency. The homogeinity of 
climatic data time series data was conducted to detect for any 
possible errors resulting from the data measurements. In addition, 
homogeneity was used to check for the fluctuations due to climate 
changes. The cumulative total climatic variable, precipitation were 
computed for each station and then plotted against the cumulative 
total of an adjacent station (Figure 3). Any sudden change in the 
gradient of the double-mass curve was considered to indicate 
inconsistency in the data. Although there were some changes at 
some points on the curves for some stations, it was considered 
insignificant for the present study. 
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Figure 2. The location of the upper Tana River basin in Kenya. 

 
 
 

Table 1. Meteorological stations. 
 

S/No. Station name Station ID 
Coordinates 

Elevation (m) 
Longitude (Degrees) Latitude (Degrees) 

1 MIAD 9037112 37.350 -0.700 1246 

2 Embu  9037202 37.450 -0.500 1494 

3 Kerugoya DWO 9037031 37.327 -0.382 1598 

4 Sagana FCF 9037096 37.054 -0.448 1234 

5 Nyeri  9036288 36.970 -0.500 1780 

6 Maragua G. E. F. 9036212 36.850 -0.750 2296 

7 Naro-Moru F.G.P. 9037064 37.117 -0.183 2296 

8 Mangu HS 9137123 37.033 -1.100 1630 

 
 
 
Filling in missing data 
 
The meteorological stations; 9037064, 9037112, 9037031, 
9137123, 9037202, 9037096, 9036288 and 9036212 (Table 2) had 
continuous data for 26, 28, 35, 32, 40, 35, 40 and 23 years 
respectively. The data for each station was partitioned into training 
and validation data sets comprising 70% and 30% respectively of 
the total continuously recorded data. 

In this study, the ANN structure for each station was obtained by 
considering different input neurons for different time delays; t, t-1, t-

2,…, t-n, in the input layer. The number of input variables was equal 
to the input neurons. The initial number of hidden neurons of the 
ANN model architecture was determined using the procedure adapted 
from Belayneh and Adamowski (2012) where the hidden layer 
neurons were initially set at 2n+1 where n is the input neurons. The 

Hidden Neurons (HN) were then increased and decreased through 
trial and error technique for data sets at each hydrometric station. 
This resulted to an output that was taken as the estimated variable. 

The output layer comprises neurons in all the networks that are 
equal to the following month’s variable value (It+1). In this study, the
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Figure 3. Double mass curve based on precipitation upper Tana River basin. 

 
 
 
Table 2. Dominant soils for the upper Tana River basin. 
 

Elevation Dominant soil type MC at saturation % MC at field capacity % MC at wilting point % AWC (%) TAW (mm) 

HE Andosols 60 40 24 16 172 

ME Nitosols 53 31 22 9 98 

LME Cambisols 48 28 14 14 74 

LE Ferralsols 53 26 17 9 82 
 

HE, ME, LME, LE means highest elevation, middle elevation, lower middle elevation and lowest elevation respectively. Source: Hunink et al. (2009). 

 
 
 
Feed Forward Neural Network (FFNN) and Recursive Neural 
Network (RNN) were applied and tested in the model training. 
Initially three different training algorithms were applied to train the 
structures. These were the back-propagation (BP), Levernberg-
Marquardt (LM) and Conjugate Gradient (CG) algorithms. From 
preliminary results, it showed that a three-layer feed forward neural 
network with different input and hidden neurons was superior in 
performance, and that the best results were also obtained using the 
LM training algorithm. Thus the best ANN structure of three-layer 
feed forward network based on LM training algorithm was adopted 
for filling in of missing data in this study. The data was first 
normalized at each station before exporting it into the graphical 
user interface (GUI) of the MATLAB. This was done by applying the 
function given in Equation (1) which was adapted from Morid et al. 
(2007). 
 

 
 

 minmax

minmax

min
min XX

xx

xX
XX o

n 



             (1) 

 
Where, 
Xn = normalized value 
Xmin = the selected minimum value for standardization 
Xmax = the selected maximum value for standardization 
Xo = original value 
xmin = minimum value present in the original data set 
xmax = maximum value present in the original data set. 
 
All the input and output values for ANN were normalized to range 
between Xmin of equal to 0.1 and Xmax of less  than  1.  According  to 

Morid et al. (2007), the values of the Xmin 0.1 and Xmax of 0.9 
perform best for drought indices such as SPI and EDI. Thus these 
values were adapted for this study.  After normalization, the various 
drought forecasting ranges were determined. 

For each of the ANN model run on the graphical user interface 
(GUI) of the MATLAB performance was evaluated based on the 
correlation coefficient R and Mean Square Error (MSE) criteria and 
the best model. The best ANN models were then adopted for filling 
any missing data for respective hydro-meteorological stations. The 
steps that were followed in filling the missing data are summarized 
in Figure 4. 

 
 
Computation of drought using PDSI 

 
The Palmer Drought Severity Index (PDSI) was developed based 
on a criterion for determining the beginning and end of drought or 
wet period spell (Palmer, 1965; Wang, 2010). It is a simple monthly 
water balance model which requires rainfall, temperature and 
catchment soil moisture content as input parameters. This tool 
applies a concept of supply and demand over a two-layer model. In 
this concept, the difference between the quantity of precipitation 
needed to maintain a natural water balance level and the actual 
precipitation is determined. The index does not consider stream 
flow, reservoir water balance, and other hydro-meteorological 
variables that influence the drought (Karl and Knight, 1985; Yan et 
al., 2013a; b). The index has been modified and applied by a 
number of researchers. For instance Wondie and Terefe (2016) 
used a self-calibrated PDSI to assess drought in Ethiopia for the 
period 1901 to 2014). 
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Figure 4. Flow chart of the steps used 
in filling the missing data using ANN. 

 
 
 

The Palmer Drought Severity Index (PDSI) was computed using 
precipitation, temperature and the local Available Water Content 
(AWC) of the soil as the input variables. The available water 
capacity (AWC) and Total Available Water (TAW) were estimated 
based on the dominant soil characteristics for the each elevation 
band of the upper Tana River basin. For the gauge stations within 
the four partitions of elevation bands, the AWC values adapted for 
PDSI computation were 172, 98, 74 and 82 mm which were based 
on values given in Table 2, for defined dominant soil types. Table 3 
shows some of the physical and chemical properties of the 
dominant soils. 

The PDSI was determined by getting the difference between 
actual precipitation and water deficiency or surplus in any given 
month i. This was achieved by applying the relation: 
 

iii PPd ˆ               (2) 

 
Where, di = difference between actual precipitation and pi and the 
climatically appropriate for existing conditions (mm) 
Pi = actual precipitation (mm) 

iP̂ = an indicator of water deficiency or surplus in month i. 
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The water deficiency or surplus was estimated from the relation: 
 

iiii PLPROPRPEP  ˆ            (3) 

 

Where, iP̂ = an indicator of water deficiency or surplus in month i  

(mm). 
PEi = potential evapo-transpiration of month i (mm). 
PRi = potential recharge that gives the quantity of water required to 
bring the soil to its water holding capacity (mm). 
PROi = the potential runoff (which is defined as the difference 
between the precipitation and potential recharge (mm). 
PLi = potential loss or the amount of soil moisture that could be lost 
from soil by evapo-transpiration during a zero precipitation period 
(mm). 
 
The potential evapotranspiration was estimated using Hargreaves 
method adapted from Sivaprakasam et al. (2011) given as: 
 

    5.0

minmax78.170023.0 TTTRPE meana     (4) 

 
Where, PE = potential evapotranspiration (mm/month). 
Ra = solar/extra-terrestrial radiation (MJ m-2 month-1). 
Tmean = mean monthly temperature (°C). 
Tmax = maximum monthly air-temperauture (°C). 
Tmin = minimum monthly air-temperature (°C). 
 
The α, β, γ and δ are climatic coefficients which provide mean value 
averaged within the base period. These coefficients were computed 
from the following relations: 
 

PE

ET
  , 

PR

R
 , 

PRO

RO
  and 

PL

L
         (5) 

 

Where, ET = mean actual evapo-transpiration (mm). 

PE = mean potential evapo-transpiration (mm). 

R = mean actual recharge (mm). 

PR = mean potential recharge (mm). 

RO = mean actual runoff (mm). 

PRO = mean potential runoff (mm). 

L = mean water loss due to evapo-transpiration when precipitation 
is zero (mm). 

PL = mean potential water loss (mm). 
 
The values of monthly PRi, PROi and PLi were derived from the 
generated results of soil water content for every month i using the 
technique given by Yan et al. (2013a; b). These variables were 
calculated from the following relations: 

 

1 ii SWAWCPR              (6) 

 

iii PRAWCSWPRO  1
            (7) 

 

 1,min  ii SWPEPL              (8) 

 
The di was then converted into indices of moisture anomaly zi which 
was calculated using the equation: 
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Table 3. Physical-chemical properties of the dominant soils (Muchena and Gachene, 1988). 
 

Soil type 
Particle size distribution (%) 

Organic carbon content (%) Nitrogen content (%) 
Sand Silt Clay 

Andosols 5 35 60 2.20 0.66 

Nitosols 16 10 74 0.76 0.25 

Cambisols 56 22 22 5.77 1.10 

Ferralsols 35 15 49 2.3  

 
 
 

Table 4. Classification of drought based on PDSI. 
 

Value of index Drought classification 

4.00 or more Extremely wet 

3.00 to 3.99 Very wet 

2.00 to 2.99 Moderately wet  

1.00  to 1.99 Slightly normal   

-0.50  to -0.99 Incipient wet 

0.49 to -0.49 Near normal 

-0.50 to -0.99 Incipient drought 

-1..00 to -1.99 Mild drought 

-2.00 to -2.99 Moderate drought 

-3.00 to -3.99 Severe drought 

-4.00 or less Extreme drought 

 
 
 

ii dkz  1              (9) 

 
Where, kc = climatic characteristic that was estimated using the 
relation: 
 

 
 LP

RPE
k




1

            (10) 

 
The PDSI function was used in this study is of the form: 
 

1

1897.0
C

Z
XPDSI i

ii  
                          

(11) 

 
Where, PDSI = The PDSI for the ith month 
Xi-1 = previous months PDSI 
Zi = Palmer Moisture Anomaly Index (PMAI) 
 

The value of PDSI for the initial month of was taken as equal to

1C

Z i . 

The Zi (PMAI) is expressed as: 

 

ii d
kD

DC
Z 


12

1 2

2
           

(12) 

 
Where, k2 = weighting factor 
d = water deficiency (mm) 
c2 = conceptual parameter 
D = absolute value of d 
In this study, a C2 value of 438.91 adapted from Yan et al. (2013a; b)  

was used. The k2 which is a function of average water demand and 
supply (Barua, 2010; Yan et al., 2013a; b; Zoljoodi and Didevarasl, 
2013) was estimated using the relation: 
 

 
  41032 log C

DLP

RORPE
Ck 



















            

(13)

 

 

 

Where, D = mean of the absolute values of d 
The conceptual parameters C3 and C4 were equated to 1.2459 

and 3.3684 respectively adapted from Yan et al. (2013a; b). The 
computed PDSI values were used to classify drought conditions 
based on the threshold levels given in Table 4 which was adapted 
from Palmer (1965) and Castano (2012). The drought severity was 
computed for 1970 and 2010 based on the severity equation. The 
area for each severity class was captured using the ArCGIS and 
summarized in Table 5. 
 
 
Computation of drought severity 
 

Evaluation of spatial distribution of drought severity 
 

The sum of drought severity (DId) values below zero during each 
year for the study period was calculated. The probability P of 
drought occurrence was determined by dividing the number of 
months that had DI values less than zero by 12 months of the year. 
The drought severity was then computed at each station using the 
relation: 
 





N

N

d PDIS
1

               (14) 
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Table 5. Drought Category-Area-Distribution (CAD) as detected using PDSI for October in 1970 and 2010. 
 

Drought category Drought criterion 
1970 2010 

Area (km
2
) % Area (km

2
) % 

Extreme drought -4 or less 3758.01 21.57 4540.36 26.06 

Severe drought -3 to -2.99 1784.90 10.25 2537.551 14.57 

Mild drought -2.00 to -2.99 2062.56 11.84 1675.444 9.62 

Slight drought -1.00 to -1.99 2643.58 15.18 1824.072 10.47 

Normal  0.49 to -0.49 1946.48 11.17 1964.556 11.28 

Slightly wet 2.00 to 2.99 1782.32 10.23 1893.08 10.87 

Moderate wet 3.00 to 3.99 1681.05 9.65 1420.637 8.16 

Extremely wet 4.00 or more 1761.10 10.11 1564.297 8.98 

 
 
 

 
 

Figure 5. Time series of PDSI for dry seasons of at MIAD meteorological station. 

 
 
 
Where, S = annual drought severity for a defined year 
DId =The sum of drought severity values below zero during a 
particular year 
P = probability of drought occurrence for the defined year 
N=period in months in the year (=12 months in this case). 
 
The resulting data was then used to estimate spatial distribution of 
drought severity using the Krigging estimator in the ArcGIS 10.1. In 
this study, sixteen hydrometric stations within the upper Tana River 
basin were used for hydrological evaluation. These stations have 
unique geographical location and their spatial extent was created 
through the application GIS. The GIS tool was used to compute and 
present the spatial distribution, variation and trends of droughts for 
PDSI. 

 
 
RESULTS 
 
Temporal drought patterns of the PDSI 
 
Figures 5 and 6 illustrate the frequencies and duration  of  

integrated seasonal droughts and wet spells as detected 
by the PDSI. For Figures 5 to 8, within the four decades, 
moderate (PDSI=-2.00 to -2.99), severe (PDSI=-3.00 to -
3.99) and extreme (PDSI=-4 or less) droughts were 
detected using the PDSI during the dry season in the 
MIAD station. 

For the Naro-Moru meteorological station, moderate 
(PDSI=-2.00 to -2.99), severe (PDSI=-3.00 to -3.99) and 
extreme (PDSI=-4 or less) droughts were detected during 
the dry season.  Figures 7 and 8 that the PDSI time 
series values for MIAD meteorological station (ID 
9037112) located at the lower elevation of the upper 
Tana River basin are lower than those for the Naro-Moru 
station (ID 9037064). 

Results of the mean monthly temporal PDSI values 
indicate that March and April exhibit moderate (PDSI=-
0.200) and extreme (PDSI=-4.00) droughts respectively. 
For the months of September, October and November 
extreme (PDSI<-4.00), incipient (PDSI=-0.5) and extreme
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Figure 6. Time series of PDSI for wet seasons at MIAD meteorological station. 

 
 
 

 
 

Figure 7. Time series of PDSI for dry seasons at Naro-Moru meteorological station. 

 
 
 
(PDSI=-0.400) droughts are detected annually. 

The rest of the months have positive PDSI values 
indicating wetness of different magnitudes in the river 
basin (Figure 9). 

The area under extreme and severe droughts are 
3758.01 (21.57%) and 1784.90 (10.25%) respectively for 
the year 1970 while the values for 2010 are 4540.36 
(26.06%) and 2537.55 (14.57%) respectively as given in 
Table 6. 
 
 
Spatially distributed drought severity based on PDSI 
 
The results of spatially distributed drought severity based  

on PDSI show that the ranges of maximum and minimum 
drought severity values in 1970 are -0.868 to -0.804 and -
0.675 to -0.610, respectively. 
 
 
DISCUSSION 
 
The spatial and temporal drought was found to 
significantly change for the period 1970 to 2010. The 
temporal variability of drought from 1970 to 2010 is 
described by negative values that indicate droughts of 
different severity and duration while the positive ones 
correspond to wet conditions. The findings indicate that 
extreme drought occurred twice in the four decades. It is
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Figure 8. Time series of PDSI for wet seasons at Naro-Moru meteorological station. 
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Figure 9. Monthly average PDSI for the period 1970 to 2010. 

 
 
 
observed that for dry seasonal PDSI, the values in the 
months of January to March (J-M) are constantly higher 
than the ones for July to September (J-S). By comparing 
the time series PDSI values for dry and wet seasons for 
the meteorological stations, it can be seen that the time 
series plots for the PDSI values for dry season are 
generally lower than those for the wet seasons. The PDSI 
time series values for meteorological stations located at 
the lower elevation of the upper Tana River basin were 
lower than those for the stations which located at higher 
elevation.  Thus, the PDSI results indicate that the areas 
within the lower elevations are more prone to drought 
risks than those in higher elevations. From the results of 
spatially distributed drought magnitude, there is a general 
increase in area under the extreme and severe drought 
as given by PDSI from 1970 to 2010. The distribution of 
extreme and severe drought categories dominate in the 
south-eastern parts of the upper Tana River basin while 

extreme wet and moderate wet conditions dominate the 
north-western areas. Thus, south-eastern parts of the 
basin have the highest risk of experiencing high drought 
magnitudes (Figure 10). However, the north-western areas 
have the lowest drought risks. Comparing the findings 
with similar research by Yan et al. (2013a; b) in Luanhe River 
basin, showed that the lowest PDSI values (PDSI< -4.00) 
are persistently observed in the north-western areas of 
Luanhe basin. On the other hand, the south-eastern areas 
of the upper Tana River basin exhibit similar lowest values 
of PDSI (PDSI< -4.00). The drought severity gave maximum 
and minimum drought severity values occurring respectively 
in the north-western and south-eastern areas of the basin. 
The maximum and minimum severity values increased 
from -1.478 to -1.348 and from -1.087 to -0.957 in 2010 
as presented in the results. There was an increase in 
drought severity over the years of record (Figure 11). The 
trend  in  spatial  PDSI  severity  values  over  time



188          Int. J. Water Res. Environ. Eng. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
(a). PDSI-based drought for the year 1970 

 
(b) PDSI-based drought for the year 2010  

 

Figure 10. Spatially distributed magnitude of PDSI-based drought in October. 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b) Drought severity for 1990 

 

(c) Drought severity for 2000 

 

(d) Drought severity for 2010 

 

(a). Drought severity for 1970 

 
 

Figure 11. Spatially distributed PDSI-based drought severity. 



 
 
 
 
compared closely with the spatial patterns trend 
explained as by Zoljoodi and Didevarasasl (2013). For 
instance, these authors showed that the PDSI severity 
values increased from -1.28 (1951-2005) to -7.68 (1999-
2002) in Iran. In comparison with the present study, the 
results show that the PDSI increased from the range -
0.675 to -0.610 in 1970 and from -1.087 to 0.957 in 2010 
for the north-eastern areas of the upper Tana River 
basin. Thus, the findings can be used in decision making 
especially in prioritized drought mitigation measures 
within the river basin. 
 
 
Conclusion 
 
Spatial distribution of drought indicates that south-eastern 
parts of the basin are the most susceptible to droughts 
while the north-western areas are least prone to the 
droughts. From the results of spatially distributed drought 
magnitude, it can be seen that there is a general increase 
in area under the extreme and severe drought as given 
by PDSI from 1970 to 2010. The application of the PDSI 
reflects the spatial heterogeneity and temporal variability 
of drought across the upper Tana River basin. The 
drought assessment from this study offer technical 
approach for comprehensive understanding of drought for 
effective drought-induced disaster mitigation and its 
management, with a view to reducing adverse effects on 
livelihoods in the river basin. The findings show that the 
lowest PDSI values (PDSI< -4.00) are persistently 
observed in the north-western areas of upper Tana River 
basin. On the other hand, the south-eastern areas of the 
upper Tana River basin exhibit similar lowest values of 
PDSI (PDSI< -4.00). By comparing the time series results 
of PDSI for dry and wet seasons indicate that the 
temporal drought detected by PDSI values for dry season 
are generally lower than those for the wet seasons. The 
results of the study can be incorporated in drought early 
warning system and reduce adverse impacts of drought 
on water resources, ecosystems and peoples livelihoods. 
 
 
CONFLICTS OF INTERESTS 
 
The authors have not declared any conflict of interests. 

 
 
ACKNOWLEDGEMENTS 
 
The authors of this article appreciate the Egerton Univer-
sity, Division of Research and Extension for support in 
publication of this article. Great appreciation to the 
African Development Bank (AfDB) for scholarship offered 
for the PhD study that culminated to this paper. The 
authors are thankful to authors, editors and publishers of 
journals and books from where the literature of this article 
has been  referred.  The  authors  greatly  appreciate  the 

Wambua et al.          189 
 
 
 
editorial board and the reviewers of the international 
journal of water resources and environmental engineering 
(IJWREE) for accepting to publish this paper and for the 
useful comments that improved the original manuscript. 
 
 
REFERENCES  
 
Barua S (2010). Drought assessment and forecasting using a non-linear 

aggregated drought index, PhD thesis, Victoria University, Australia. 
Belayneh A, Adamowski J (2013). Drought forecasting using new 

machine learning methods. J. Water Land Dev. 18(I-IV):3-12.  
Belayneh A, Adamowski J (2012). standard precipitation index drought 

forecasting using neural networks, wavelet neural networks and 
support vector regression. J. Appl. Comput. Intell. Soft Comput. 18(I-
IV):3-12. 

Bonal D, Burban B, Stahl C, Wagner F, Hérault B (2016). The response 
of tropical forests to drought-lessons from recent research and future 
prospects. Ann. For. Sci. 73:27-44. 

Castano A (2012). Monitoring drought at river basin and regional scale: 
application in Sicily, PhD Dessertation in Hydraulic Engineering, 
University of Catania, Italy.  

Hunink JE, Immerzeel WW, Droogers P (2009). Report on green water 
credits for the upper Tana River Basin, Kenya Phase II-Pilot 
operations biophysical assessment using Soil and water assessment 
tool SWAT. 

IFAD (2012). Upper Tana catchment natural resource management 
project report, east and southern Africa division, project management 
department.   

Jacobs J, Angerer J, Vitale J, Srinivasan R, Kaitho J, Stuth J (2004). 
Exploring the Potential Impact of Restoration on Hydrology of the 
Upper Tana RiverCatchment and Masinga Dam, Kenya, a Draft 
Report, Texas A & M University. 

Karamouz M, Rasouli K, Nazi S (2009). Development of a hybrid index 
for drought prediction: case study. J. Hydrol. Eng. 14(6):617-627. 

Karamouz M, Szidarovszky F, Zaharaie B (2003). Water resources 
systems analysis, Lewis Publishers, Florida, U.S.A  

Karl TR, Knight RW (1985). Atlas of monthly palmer hydrological 
drought indices for the continuous United States, Asheville, N.C USA 
national climatic data centre, climatology series (3-7) report. 

Loucks DP, van-Beek E (2005). Water resources systems planning and 
management, an introduction to methods, models and applications, 
studies and reports in hydrology, UNESCO publishing Paris. 

Mishra AK, Singh VP (2010). A Review of Drought Concepts. J. Hydrol. 
391(1-2):202-216. 

Morid S, Smakhtin V, Bagherzadeh K (2007). Drought forecasting using 
artificial neural networks and time series of drought indices. Int. J. 
Climatol. 27(15):2103-2111. 

Muchena FN, Gachene CKK (1988). Soils of the highland and 
mountainous areas of Kenya with special emphasis on agricultural 
soils, http: //wwwjstor.org, accessed on 25

th
 May 2017. 

Palmer WC (1965). Meteorological drought research paper 45, weather 
Bureau, Washington D.C, U.S.A. 

Quiring SM, Papakryiakou TN (2003). An evaluation of agricultural 
drought indices for Canadian prairies. Agric. For. Meteorol. 118(1-
2):49-62. 

Sivaprakasam S, Murugappan A, Mohan S (2011). Modified 
Hangreaves equation for estimation of ETo in a hot and humid 
location in Tamilnadu state, India. Int. J. Eng. Sci. Technol. 3(1):592-
600. 

UNDP (2012). Kenya, adapting to climate variability in arid and semi-
arid lands, project report on risks posed by climate variability to 
delivery of water framework directives, Environ. Int. in press. 

Wang W (2010). Drought analysis under climate change by application 
of drought indices and copulas, MSc thesis in Civil and 
Environmental Engineering, Portland State University. 

Wondie M, Terefe T (2016). Assessment of drought in Ethiopia by using 
self-calibrated Palmer Drought Severity Index. Int. J. Eng. Manage. 
Sci. 7(2):108-117. 

WRMA (2010). Physiological survey in the upper Tana catchment, a  



190          Int. J. Water Res. Environ. Eng. 
 
 
 

natural resources management project report, Nairobi.  
Yan DH, Wu D, Huang R, Wang LR, Yang GY (2013a). Drought 

evolution characteristics and precipitation intensity changes during 
alternating dry-wet changes in Huang-Huai-Hai River basin. J. 
Hydrol. Earth Syst. Sci. 10:2665-2696. 

Yan D, Shi X, Yang Z, Li Y, Zhao K, Yuan Y (2013b). Modified palmer 
drought severity index based on distributed hydrological simulation. J. 
Math. Problem Eng. 2013:1-8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Zoljoodi M, Didevarasl A (2013). Evaluation of Spatio-temporal 

variability of droughts in Iran using Palmer Drought Severity Index 
and its precipitation factors through (1951-2005). Atmos. Clim. Sci. J. 
3:193-207. 



 

 

International Journal of 
Water Resources and 

Environmental Engineering 

Related Journals Published by Academic Journals 
 
International Journal of Computer Engineering Research 
Journal of Chemical Engineering and Materials Science 
Journal of Civil Engineering and Construction Technology 
Journal of Electrical and Electronics Engineering 
Research 
Journal of Engineering and Computer Innovations 
Journal of Engineering and Technology Research 
Journal of Mechanical Engineering Research 
Journal of Petroleum and Gas Engineering 


	Front Template
	1 Ologhadien and Nwaogazie
	2 Wambua et al
	Back Template

